Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Drug Chem Toxicol ; : 1-11, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37795621

Inhibiting aldose reductase (ALR2, AR) as well as maintaining a concomitant antioxidant (AO) activity via dual-acting agents may be a rational approach to prevent cellular glucotoxicity and at least delay the progression of diabetes mellitus (DM). This study was aimed at evaluating the dual-acting AR inhibitor (ARI) cemtirestat (CMTI) on tissue oxidative stress (OS) and carbonyl stress (CS) biomarkers in rats exposed to fructose alone (F) or fructose plus streptozotocin (D; type-2 diabetic). D and F rats were either untreated or treated daily with low- or high-dose CMTI, ARI drug epalrestat (EPA) or antioxidant stobadine (STB) for 14 weeks. Malondialdehyde (MDA), glutathione S-transferase (GST), nitric oxide synthase (NOS), and catalase (CAT) were increased in the sciatic nerve of F and D. These increases were attenuated by low doses of CMTI and STB in D, but exacerbated by low-dose EPA and high-dose CMTI in F. STB and CMTI and to a lesser extent EPA improved MDA, protein-carbonyl, GST and CAT in the hearts and lungs of F and D. CMTI and STB were more effective than EPA in improving the increased MDA and protein-carbonyl levels in the kidneys of F and especially D. CMTI ameliorated renal GST inhibition in D. In the lungs, hearts, and kidneys of F and D, the GSH to GSSG ratio decreased and caspase-3 activity increased, but partially resolved with treatments. In conclusion, CMTI with ARI/AO activity may be advantageous in overcoming OS, CS, and their undesirable consequences, with low dose efficacy and limited toxicity, compared to ARI or antioxidant alone.

2.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 21.
Article En | MEDLINE | ID: mdl-37111385

Cemtirestat, a bifunctional drug acting as an aldose reductase inhibitor with antioxidant ability, is considered a promising candidate for the treatment of diabetic neuropathy. Our study firstly examined the effects of prolonged cemtirestat treatment on bone parameters reflecting bone quality in non-diabetic rats and rats with streptozotocin (STZ)-induced diabetes. Experimental animals were assigned to four groups: non-diabetic rats, non-diabetic rats treated with cemtirestat, diabetic rats, and diabetic rats treated with cemtirestat. Higher levels of plasma glucose, triglycerides, cholesterol, glycated hemoglobin, magnesium, reduced femoral weight and length, bone mineral density and content, parameters characterizing trabecular bone mass and microarchitecture, cortical microarchitecture and geometry, and bone mechanical properties were determined in STZ-induced diabetic versus non-diabetic rats. Treatment with cemtirestat did not affect all aforementioned parameters in non-diabetic animals, suggesting that this drug is safe. In diabetic rats, cemtirestat supplementation reduced plasma triglyceride levels, increased the Haversian canal area and slightly, but insignificantly, improved bone mineral content. Nevertheless, the insufficient effect of cemtirestat treatment on diabetic bone disease does not support its use in the therapy of this complication of type 1 diabetes mellitus.

3.
J Anim Physiol Anim Nutr (Berl) ; 105(2): 336-344, 2021 Mar.
Article En | MEDLINE | ID: mdl-33012134

The purpose of this study was to investigate the impact of eggshell calcium (Biomin H® dietary supplement) and its combinations with alfacalcidol (1α-hydroxyvitamin D3 ) and menaquinone-7 (vitamin K2 ) on ovariectomy-induced bone loss in rats. Adult female rats (n = 48) were divided into 6 groups of 8 individuals each: sham-operated rats (SHAM); ovariectomized (OVX) rats untreated; OVX rats treated with Biomin H® (BIO); OVX rats simultaneously receiving Biomin H® , vitamin D3 (BIO + D3 ); OVX rats simultaneously treated with Biomin H® , vitamin K2 (BIO + K2 ) and OVX rats treated with Biomin H® , vitamin D3 , vitamin K2 (BIO + D3  + K2 ) during 8 weeks. Biochemical parameters, bone mineral density (BMD), bone mineral content (BMC) and femoral bone microstructure were determined. Plasma calcium and phosphate were increased in BIO + D3 and BIO + D3  + K2 groups as compared to OVX. Alkaline phosphatase was elevated in OVX, BIO versus SHAM, BIO + D3  + K2 groups. When compared to OVX group, decreased urine deoxypyridinoline was observed in all treated groups and femoral BMD, BMC were higher in BIO, BIO + D3 , BIO + D3  + K2 groups. The BIO + K2 rats had similar densitometrical values than OVX individuals. Microcomputed tomography revealed increased trabecular relative bone volume (due to an increase in trabecular number) in BIO + D3 , BIO + D3  + K2 as compared to OVX. The higher relative bone volume in BIO + D3 , BIO + D3  + K2 groups was also accompanied by an increase in bone surface. In the cortical bone, an enhanced periosteal bone apposition was identified in BIO, BIO + D3 , BIO + K2 , BIO + D3  + K2 groups. The rats from BIO + D3  + K2 group had a higher area of primary osteon's vascular canals. In BIO + D3 , BIO + K2 , BIO + D3  + K2 groups, an increased area of secondary osteons was determined in comparison with OVX. Our results indicate the beneficial effect of triple application of Biomin H® , vitamin D3 , vitamin K2 , as well as simultaneous administration of Biomin H® , vitamin D3 on the inhibition of ovariectomy-induced bone loss in a rat model of osteoporosis.


Osteoporosis , Rodent Diseases , Animals , Bone Density , Calcium , Egg Shell , Female , Hydroxycholecalciferols , Osteoporosis/veterinary , Ovariectomy/veterinary , Ovum , Rats , Somatomedins , Vitamin K 2/analogs & derivatives , X-Ray Microtomography
4.
Bioorg Med Chem ; 29: 115885, 2021 01 01.
Article En | MEDLINE | ID: mdl-33271452

Recently we have developed novel oxotriazinoindole inhibitors (OTIs) of aldose reductase (ALR2), characterized by high efficacy and selectivity. Herein we describe novel OTI derivatives design of which is based on implementation of additional intermolecular interactions within an unoccupied pocket of the ALR2 enzyme. Four novel derivatives, OTI-(7-10), of the previously developed N-benzyl(oxotriazinoindole) inhibitor OTI-6 were synthetized and screened. All of them revealed 2 to 6 times higher ALR2 inhibitory efficacy when compared to their non-substituted lead compound OTI-6. Moreover, the most efficient ALR2 inhibitor OTI-7 (IC50 = 76 nM) possesses remarkably high inhibition selectivity (SF ≥ 1300) in relation to structurally related aldehyde reductase (ALR1). Derivatives OTI-(8-10) bearing the substituents -CONH2, -COOH and -CH2OH, possess 2-3 times lower inhibitory efficacy compared to OTI-7, but better than the reference inhibitor OTI-6. Desolvation penalty is suggested as a possible factor responsible for the drop in ALR2 inhibitory efficacy observed for derivatives OTI-(8-10) in comparison to OTI-7.


Aldehyde Reductase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Triazines/pharmacology , Aldehyde Reductase/metabolism , Animals , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Indoles/chemical synthesis , Indoles/chemistry , Lens, Crystalline/enzymology , Male , Molecular Docking Simulation , Molecular Structure , Rats , Rats, Wistar , Structure-Activity Relationship , Triazines/chemical synthesis , Triazines/chemistry
5.
Chem Biol Interact ; 332: 109286, 2020 Dec 01.
Article En | MEDLINE | ID: mdl-33038328

(4-Oxo-2-thioxothiazolidin-3-yl)acetic acids exhibit a wide range of pharmacological activities. Among them, the only derivative used in clinical practice is the aldose reductase inhibitor epalrestat. Structurally related compounds, [(5Z)-(5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)]acetic acid derivatives were prepared previously as potential antifungal agents. This study was aimed at the determination of aldose reductase inhibitory action of the compounds in comparison with epalrestat and evaluation of structure-activity relationships (SAR). The aldose reductase (ALR2) enzyme was isolated from the rat eye lenses, while aldehyde reductase (ALR1) was obtained from the kidneys. The compounds studied were found to be potent inhibitors of ALR2 with submicromolar IC50 values. (Z)-2-(5-(1-(5-butylpyrazin-2-yl)ethylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid (3) was identified as the most efficacious inhibitor (over five times more potent than epalrestat) with mixed-type inhibition. All the compounds also exhibited low antiproliferative (cytotoxic) activity to the HepG2 cell line. Molecular docking simulations of 3 into the binding site of the aldose reductase enzyme identified His110, Trp111, Tyr48, and Leu300 as the crucial interaction counterparts responsible for the high-affinity binding. The selectivity factor for 3 in relation to the structurally related ALR1 was comparable to that for epalrestat. SAR conclusions suggest possible modifications to improve further inhibition efficacy, selectivity, and biological availability in the group of rhodanine carboxylic acids.


Acetic Acid/pharmacology , Aldehyde Reductase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Acetic Acid/chemical synthesis , Acetic Acid/chemistry , Aldehyde Reductase/metabolism , Animals , Binding Sites , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Hep G2 Cells , Humans , Lens, Crystalline/drug effects , Lens, Crystalline/enzymology , Ligands , Male , Rats, Wistar , Rhodanine/analogs & derivatives , Rhodanine/chemistry , Rhodanine/pharmacology , Thiazolidines/chemistry , Thiazolidines/pharmacology
6.
Neuroscience ; 443: 206-217, 2020 09 01.
Article En | MEDLINE | ID: mdl-32681927

Neuroprotective action of the novel aldose reductase (AR) inhibitor cemtirestat (CMT), 2-(3-thioxo-2H-[1,2,4]triazino[5,6-b]indol-5(3H)-yl)acetic acid, was recently proved in experimental rat models of diabetes. The in vivo results indicated that the antioxidant activity of this compound might have participated on its effects. The aim of this study was to explore in a greater detail the putative antioxidant mechanisms potentially involved in CMT mediated neuroprotection. Antioxidant efficacy per se of CMT was proved by a ferric reducing antioxidant power (FRAP) test and CMT was found to scavenge reactive oxygen species (ROS) generated in water phase chemically with decreasing efficacy as follows ROO > H2O2 > O2-. Studies in liposomes revealed the ability of CMT to inhibit lipid peroxidation more efficiently than melatonin, yet less effectively than Trolox. In the rat brain cortical slices, CMT reduced the loss of cell viability/mitochondrial function induced by quinolinic acid (QUIN), and inhibited lipid peroxidation. In addition, CMT normalized the GSH/GSSG ratio which could be explained, at least partially, by the ability of this compound to release free GSH from the pool of endogenously bound disulfides. Neuronal cell damage induced by QUIN or H2O2 was reduced by CMT as proved by significant drop in propidium iodide incorporation into cells. On balance then, our results corroborated the notion of a multifunctional action of CMT as a drug combining AR inhibition with direct antioxidant and ROS scavenging activity. Moreover, the ability of CMT to restore thiol-disulfide homeostasis was proved.


Antioxidants , Liposomes , Animals , Antioxidants/pharmacology , Brain , Hydrogen Peroxide , Indoleacetic Acids , Lipid Peroxidation , Models, Chemical , Neuroprotection , Rats , Rats, Wistar , Reactive Oxygen Species , Sulfhydryl Compounds
7.
Neurochem Res ; 44(5): 1056-1064, 2019 May.
Article En | MEDLINE | ID: mdl-30689163

Peripheral neuropathy is the most prevalent chronic complication of diabetes mellitus. Good glycemic control can delay the appearance of neuropathic symptoms in diabetic patients but it is not sufficient to prevent or cure the disease. Therefore therapeutic approaches should focus on attenuation of pathogenetic mechanisms responsible for the nerve injury. Considering the role of polyol pathway in the etiology of diabetic neuropathy, we evaluated the effect of a novel efficient and selective aldose reductase inhibitor, 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid (cemtirestat), on symptoms of diabetic peripheral neuropathy in Zucker Diabetic Fatty (ZDF) rats. Since the age of 5 months, male ZDF rats were orally administered cemtirestat, 2.5 and 7.5 mg/kg/day, for two following months. Thermal hypoalgesia was evaluated by tail flick and hot plate tests. Tactile allodynia was determined by a von Frey flexible filament test. Two-month treatment of ZDF rats with cemtirestat (i) did not affect physical and glycemic status of the animals; (ii) partially inhibited sorbitol accumulation in red blood cells and the sciatic nerve; (iii) markedly decreased plasma levels of thiobarbituric acid reactive substances; (iv) normalized symptoms of peripheral neuropathy with high significance. The presented findings indicate that inhibition of aldose reductase by cemtirestat is not solely responsible for the recorded improvement of the behavioral responses. In future studies, potential effects of cemtirestat on consequences of diabetes that are not exclusively dependent on glucose metabolism via polyol pathway should be taken into consideration.


Aldehyde Reductase/pharmacology , Diabetic Neuropathies/drug therapy , Neural Conduction/drug effects , Sciatic Nerve/drug effects , Aldehyde Reductase/drug effects , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Diabetic Neuropathies/metabolism , Enzyme Inhibitors/pharmacology , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Rats, Zucker
8.
Acta Biochim Pol ; 62(3): 523-8, 2015.
Article En | MEDLINE | ID: mdl-26345091

Based on overlapping structural requirements for both efficient aldose reductase inhibitors and PPAR ligands, [5-(benzyloxy)-1H-indol-1-yl]acetic acid (compound 1) was assessed for inhibition of aldose reductase and ability to interfere with PPARγ. Aldose reductase inhibition by 1 was characterized by IC50 in submicromolar and low micromolar range, for rat and human enzyme, respectively. Selectivity in relation to the closely related rat kidney aldehyde reductase was characterized by approx. factor 50. At organ level in isolated rat lenses, compound 1 significantly inhibited accumulation of sorbitol in a concentration-dependent manner. To identify crucial interactions within the enzyme binding site, molecular docking simulations were performed. Based on luciferase reporter assays, compound 1 was found to act as a ligand for PPARγ, yet with rather low activity. On balance, compound 1 is suggested as a promising lead-like scaffold for agents with the potential to interfere with multiple targets in diabetes.


Acetic Acid/chemistry , Aldehyde Reductase/antagonists & inhibitors , Indoleacetic Acids/chemistry , PPAR gamma/metabolism , Aldehyde Reductase/metabolism , Animals , Binding Sites , Diabetes Mellitus/metabolism , Enzyme Inhibitors/pharmacology , Humans , Indoles/metabolism , Inhibitory Concentration 50 , Kidney/enzymology , Lens, Crystalline/enzymology , Ligands , Luciferases/metabolism , Male , Molecular Conformation , Protein Binding , Rats , Rats, Wistar , Thiazoles/chemistry
9.
J Med Chem ; 58(6): 2649-57, 2015 Mar 26.
Article En | MEDLINE | ID: mdl-25695864

Fifteen compounds, sharing an indole-1-acetic acid moiety as a common fragment, were selected from commercial databases for testing aldose reductase inhibition. 3-Mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid (13) was the most promising inhibitor, with an IC50 in the submicromolar range and high selectivity, relative to aldehyde reductase. The crystal structure of aldose reductase complexed with 13 revealed an interaction pattern explaining its high affinity. Physicochemical parameters underline the excellent "leadlikeness" of 13 as a promising candidate for further structure optimizations.


Aldehyde Reductase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Indoleacetic Acids/chemistry , Indoleacetic Acids/pharmacology , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/pharmacology , Acetic Acid/chemistry , Acetic Acid/pharmacology , Aldehyde Reductase/chemistry , Aldehyde Reductase/metabolism , Animals , Crystallography, X-Ray , Humans , Lens, Crystalline/drug effects , Lens, Crystalline/enzymology , Lens, Crystalline/metabolism , Male , Models, Molecular , Rats , Rats, Wistar , Sorbitol/metabolism , Structure-Activity Relationship
...